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A B S T R A C T   

Filters are composed of a complex network of interconnected pores each with tortuous paths. We present a 
general network model to describe a filter structure comprising a random network of interconnected pores, 
relaxing traditional assumptions made with simplified theoretical models. We use the model to examine the 
dependence of the filter performance on both its underlying pore structure (expressed through the pore inter-
connectivity and porosity gradient) and the feed composition (expressed through the size of the contaminants). 
We find that a simple scaling allows the performance curves over a wide range of the filter material properties to 
be mapped onto a single master curve. We also study the link between the tortuosity of a filter and its resulting 
performance, leading to further self-similarity observations. When we vary the properties of the feed, however, 
the performance curves are distinct from one another and do not collapse onto a single master curve. 

Our network model allows us to probe the behaviour of a complex and realistic filter configuration within a 
framework that is easy to implement and study, enabling accelerated testing and reducing experimental costs in 
filtration challenges.   

1. Introduction 

Modelling particle filtration through a porous structure poses a sig-
nificant challenge due to the random arrangement and interconnectivity 
of pores. Theoretical models for filters traditionally make a series of 
simplifying assumptions that enable a tractable set-up to be constructed 
and studied. For instance, this might be periodicity in the filter construct 
[1], or a lack of branching of pores [2,3]. Such assumptions provide 
appropriate models for certain filters, for example track-etched mem-
branes, which comprise approximately uniformly sized straight-through 
pores. However, in the majority of filters, pores are assorted in length, 
orientation and size, and form complex branching patterns. While 
idealistic mathematical frameworks retain the physics needed to provide 
much needed explanations for certain observed behaviour in filter 
operation (see, for example [1,2], where the nature of the flux decline 
with time is uncovered), it is natural to ask what additional insight can 
be gained by studying a more realistic filter set-up. 

A step in this direction is taken in Ref. [4], for filters composed of a 
series of obstacles onto which material adheres. A ‘pseudo-randomness’ 

is introduced by considering a random arrangement within a suitably 
large representative volume and repeating this in space. This enables a 
study of the role of randomness to be conducted in the case of 
fibrous-type filters while retaining the elements of mathematical 
simplicity afforded by enforcing periodicity in the system. The authors 
use homogenization theory to derive upscaled models in which a cell 
problem comprising flow through a small number of randomly arranged 
obstacles needs to be solved only once. Some metrics, such as particle 
diffusivity are found to be largely unaffected by the relaxation of a pe-
riodic domain, while others, such as removal efficiency, are shown to be 
dependent on the underpinning structure. The results demonstrate that, 
while there is no universal best filter for a given task, depending on 
filtration requirements, either a periodic or a random filter may offer 
superior performance. 

In Refs. [1,3] first steps are taken towards probing the effect of pore 
branching, via continuum and discrete frameworks respectively. In both 
cases the physical set-up possesses an underlying periodic structure to 
facilitate the mathematical analysis. 

In this paper we construct a fully general framework for filters 
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comprising pores of arbitrary length and orientation that branch in a 
general manner. The filters are constructed by prescribing the number 
and location of exposed pores on the upper and lower surfaces and the 
junctions in the internal filter structure. The pores are connected ac-
cording to prescribed guidelines on the maximum pore length. The 
flexibility in the derived network model allows us to probe the effect of 
pore structure in a way that models for idealistic filter geometries 
cannot. 

We centre our study on the effect of tortuosity, one of the properties 
that is most easily lost in many of the idealized set-ups. In a real filter, as 
particles block pores, subsequent particles will take paths that become 
increasingly convoluted. When operating at a fixed pressure differential, 
this effect leads to an undesirable drop in the flux of processed fluid. On 
the other hand, the longer paths that particles must take through the 
filter leads to an increase in the chance that a particle is trapped. This 
improves the likelihood of a particle being removed by the filter rather 
than passing through uncaptured. 

We assess the filter performance by considering how both the flux 
and the particle removal efficiency (fraction of particles removed) vary 
with total volume of fluid processed (the throughput), and study the 
connection between these two metrics and the tortuosity of the filter. 
Recognizing that in practice one wishes to maximize both the flux and 
the particle removal efficiency, we consider the product of these two 
quantities as a performance metric. In all cases, our performance metric 
falls with time, implying that the performance of a filter degrades with 
time. We generalize our metric to allow for scenarios in which different 
levels of importance are placed on the flux and particle removal 
efficiency. 

We study the difference in performance of a given filter when 
filtering a feed composed of particles of different sizes, and the perfor-
mance of filters with different pore interconnectivity for a given feed 
type. 

We also use our model to study the effect of porosity gradients in a 
filter. Filters whose porosity decreases with penetration depth have been 
observed to improve efficiency and as a result have received attention 
[5–9]. The porosity gradient is chosen to balance the simultaneous 
reduction of contaminant concentration with depth that arises due to 
prior filtering. Such a set-up has been considered in the context of a filter 
comprising a series of obstacles through which contaminants must tra-
verse (for example, a fibrous filter) [10,11]. Here, homogenization 
theory is generalized to incorporate weak deviations from a periodic 
domain. The authors confirm the improved removal efficiency of 
porosity-graded filters and determine the optimal porosity gradient that 
removes the most contaminant before blocking. 

Here, we consider the network analogue of such a porosity-graded 
filter, where the arrangement of pores is biased in the filter medium. 
Furthermore, our model filter is also able to exhibit a porosity gradient 
even when the porosity of the internal pore structure is uniform on 
average, by instead including a different density of upper and lower 
pores. This type of porosity gradient is observed in composite mem-
branes [12], but is less well studied. 

The results of the fully general pore-based network model derived in 
this paper are compared with those obtained for obstacle-laden filters 
considered in Refs. [4,10,11] where sensible, while areas in which this 
model is superior are probed, to add to the current understanding of the 
filtration process afforded by current theoretical models. 

2. Model set-up 

2.1. Filter construction 

We consider a filter composed of a series of pores, represented as 
cylindrical pipes. For illustrative purposes we assume these to be of 
uniform radius in this paper but note that variability in pore radii is 
easily incorporated. Without loss of generality we can set the initial pore 
radius to unity; all subsequent distances are then measured relative to 

the pore radius. We consider a filter occupying the space 0 � x � L, 
0 � y � L, 0 � z � H where the planes z ¼ 0; H define the top and bot-
tom surfaces of the filter respectively (see Fig. 1). In all of the results 
presented here we choose L ¼ H ¼ 100. We describe the filter pore 
structure through the number of pores Ntop exposed on the top surface 
(z ¼ 0) and the number of pores Nbottom exposed on the bottom surface 
(z ¼ H). The interior pore structure (0 < z < H) is constructed by 
assigning a number, Nint, of points in the 3D interior space, which form 
the pore junctions. The location of the top and bottom pores and junc-
tions are all set randomly. To construct the filter, each top-surface pore 
orifice is connected to all junctions beneath that lie within a certain 
distance, d, which we denote as the interconnectivity distance. Similarly, 
internal pore junctions are connected to all surrounding junctions that 
lie within a distance d. This process continues until junctions are con-
nected to the bottom-surface pores (see Fig. 1b). Given the random 
nature of distributing the junctions, in some cases surface-pore orifices 
may not connect to any junctions, internal junctions may not connect to 
any junctions, or outlet pores may not connect to any junctions. In this 
case these pores or junctions are redundant. 

The interior points are randomly but not necessarily uniformly 
distributed: we allow the filter structures to possess a biased porosity 

Fig. 1. (a) 3D pore distribution within a filter, biased towards the top. Here, the 
filter is defined by 0 � x � L, 0 � y � L, 0 � z � H, where the planes z ¼ 0; H 
define the top and bottom surfaces of the filter respectively, with L ¼ H ¼ 100. 
The filter possesses Ntop ¼ 100 surface pores (green dots on z ¼ 0), Nbottom ¼

100 exit pores (blue dots on z ¼ H) and Nint ¼ 500 internal pore junctions (red 
dots). (b) 2D schematic slice through a cross-section of the filter illustrating the 
pore network structure and interconnectivity distance d. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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distribution in the z direction. 
We sample the z-locations of the interior points from a triangular 

distribution with probability density function 

f ðzÞ¼
1
H

�

1þα
�

z �
1
2

H
��

; 0 < z<H; (1)  

where α is a parameter which sets the gradient of the distribution. Note 
that we require � 2=H � α � 2=H to ensure that f � 0 for all z. Note also 
that the distribution is biased towards z ¼ H when α > 0 and biased 
towards z ¼ 0 when α < 0. 

Our procedure for computing the z-location of each point is as fol-
lows: for a point with z-location Z we sample the probability that z � Z 
(for 0 � z � H) as a random number from a uniform distribution be-
tween 0 and 1, denoted ξ. Hence, 

Pðz� ZÞ¼
Z Z

0
f dz ¼ ξ: (2)  

For our particular choice of probability density function, (1), this inte-
gral can be evaluated analytically. This gives rise to a quadratic equation 
for Z with one root that lies in 0 � Z � H which provides an explicit 
formula for Z as a function of ξ. 

This bias in the z-locations of the interior points means that the 
overall porosity of the filter will also be biased in the same way, as more 
pore connections will form in regions where these interior points are 
clustered. While it is not possible to control the porosity distribution of 
the filter directly using this approach we show how the two are con-
nected in Section 5. 

2.2. Filter operation 

In all cases we consider the behaviour of the filter under constant 
applied transmembrane pressure difference ΔP. The flux q of a fluid with 
viscosity μ through a single cylindrical pore within the filter of length h, 
radius r, and pressure difference Δp across its length is given by Pois-
euille’s law [13] 

q¼
πΔp r4

8μh
: (3)  

As particles adhere to the pore walls, the pore radii and driving pressure 
must evolve in time, and so will the flux through the pores. Denoting the 
flux through the surface pores by qi, where 1 � i � Ntop, the total flux 
through the filter is given by 

Q¼
XNtop

i¼1
qi: (4)  

We define the throughput, V, of the filter to be the total fluid processed 
up to a given time, t, 

V ¼
Z t

0
QðsÞ ds: (5)  

Without loss of generality, we assume that one particle is contained in 
each unit of fluid. In this case, the throughput is then also conveniently 
equal to the number of particles that have entered the filter. 

The flux through each pore in the filter structure is calculated using 
(3). The fluid pressure on the upper and lower surface orifices follows 
from the boundary conditions that enforce the constant transmembrane 
pressure difference, ΔP. However, the pressure at each internal junction 
must be calculated by imposing that the total flux into the junction must 
balance the total flux out in an analogous fashion to Kirchoff’s law for 
electrical circuits. 

2.3. Particle deposition 

We consider a feed of particles with uniform concentration, and as-
sume that each unit of fluid contains one particle. In this case, the 
throughput is also identified as the total number of particles that have 
entered the filter (which may or may not be captured). 

As a particle arrives at the filter, the probability pi of that particle 
entering a given surface pore, i, is defined as the ratio of the flux through 
that pore to the total flux through the filter: 

pi ¼
qi

Q
: (6) 

We consider a monodisperse feed composed of particles of radius a 
(relative to the initial pore radius). If a > 1 then the particles cannot 
enter the pores and are filtered out on the surface; if a < 1 the particles 
are able to enter into the pores. In our case we are interested in the in-
ternal behaviour of the filter, and so focus our attention on particle feeds 
with a < 1. We denote pa as the probability of a particle adhering to the 
pore walls per unit length, and assume that this is a constant. The 
probability of adhering to the walls of a pore of length ℓ is then given by 

pℓ¼ 1 � ð1 � paÞ
ℓ
: (7)  

In all of the simulations reported below we choose pa ¼ 0:01. Other, 
more complex, adhesion laws could be applied, for example, by 
assuming the probability of adhesion within a pore is proportional to the 
transit time in that pore. Our model would readily generalize to cater for 
such scenarios, but here we choose the simpler form for illustrative 
clarity. 

If a particle of radius a adheres to a pore of radius r and height h then 
we assume that the radius of that pore is modified to 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4a3=3h

p
. This 

assumes that the particle’s volume is distributed uniformly over the 
inner surface of that pore, which provides a good approximation, on 
average, for the pore constriction process due to particle deposition. If 
the particle does not adhere to the wall it passes through the pore until it 
reaches the junction. Once a particle reaches a junction, the subsequent 
pore that it enters is decided based on the local fluxes out of that junction 
in the probabilistic manner given by (6). The particle cannot enter pores 
where the flow is towards the junction. If a particle selects a pore to enter 
whose radius is smaller than the particle then the particle may not enter 
the pore and instead the pore entrance will block. In this case we assume 
that the pore blocks completely and no subsequent fluid may pass 
through this pore. If a particle makes its way to the bottom layer (z ¼ H) 
without adhering to any pore wall it will escape. 

The specific flow behaviour within any junction will be complex. 
However, this will not affect the ultimate destination of the particles that 
we capture in our model – at worst, the particles may experience a delay 
to their journey through the filter while transiting the junctions – so we 
do not model the specific junction flow here. 

When the particle sticks, the flux through each pore is recalculated 
using the same procedure as before. The entire process of particle 
arrival, propagation through the filter, and recalculation of the pressure, 
flux, and radii is repeated until the total flux reaches zero and the filter is 
completely blocked. 

In all of the calculations performed in this paper we are concerned 
with fluxes through the filter scaled relative to the initial flux. In doing 
so, the pressure difference ΔP and μ do not feature in the problem. 

All graphs generated below are averaged over 100 simulations, with 
each simulation using a newly generated filter configuration with the 
same parameters that characterize the filter. This ensures that stochastic 
variations are suitably smoothed. 

3. Quantifying the fouling process 

To characterize our filter we introduce the notion of interconnectivity, 
tortuosity and particle removal efficiency. 
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We define the interconnectivity of the filter, 

d¼
maximum ​ pore ​ length ​ in ​ filter

initial ​ pore ​ radius
: (8) 

We define the tortuosity, τ, as 

τðVÞ¼ average ​ distance ​ travelled ​ by ​ escaping ​ particles
filter ​ thickness; ​ H

: (9) 

The average distance travelled by escaping particles at throughput V 
is determined by considering the previous Nτ particles that have entered 
the filter and calculating the average tortuosity of those particles that 
have escaped the filter, so that τðVÞ is a moving average in V taken over 
the interval ½V � Nτ;V þ Nτ�, where we recall that the throughput V also 
corresponds to the total number of particles that have entered the filter 
with our definition of the particle concentration. In all of the simulations 
conducted in this paper, we consider Nτ ¼ 500. Note that this means 
that whenever we consider the evolution in terms of the throughput we 
present graphical results that begin at V ¼ 500. 

We define the particle removal efficiency as 

EðVÞ¼ 1 � fraction ​ of ​ particles ​ that ​ are ​ unfiltered: (10)  

The fraction of unfiltered particles at a given throughput V is defined as 
the total number of particles that escape the filter (out of the NE particles 
that are inserted into the filter before that time), divided by NE. As for 
the tortuosity, EðVÞ is a moving average taken over the interval ½V � NE;

V þ NE�. In all of the simulations considered in this paper we take NE ¼

500. 
In the following sections, we analyse the filter performance by 

considering the variation in the flux Q, particle removal efficiency E and 
tortuosity τ as the filtration process progresses. We make comparisons 
between the 3D model and the periodic filter arrangement considered in 
Refs. [1,2] as well as exploring the additional predictions that this model 
can make, most notably, the effect of tortuosity. 

We begin in x4 by assessing the relationship between tortuosity, 
porosity distribution and interconnectivity distance that emerges from 
the network construction we have chosen. In x5 we show how we may 
use our membrane characterization to extract other physical membrane 
properties. We then move on to consider the filtration performance. First 
we analyse the dependence of the performance on the material prop-
erties of the filter used, quantified through the interconnectivity dis-
tance, d, in x6, and the bias in porosity in x7, implemented either 
through the internal porosity gradient, α, or through a difference be-
tween the number of top and bottom surface pores, Ntop and Nbottom. We 
then explore the performance of the filter when subjected to different 
feed types, characterized through the contaminant particle size, in x8. 
Finally, in x9 we draw conclusions on the implications of our results and 
the potential application of the framework for the filtration industry. 

4. Tortuosity relationship 

There is a complex link between the tortuosity of a membrane and its 
porosity, pore interconnectivity and pore distribution. Relations have 
been proposed based on phenomenological laws and the results of nu-
merical simulations in porous media, which link the tortuosity to 
porosity. The simplest of these stems from the Carman–Kozeny law, 
based on a simple capillary model for a porous medium, which predicts a 
relationship of the form τ ¼ φ3=2 where φ is the porosity [14]. We can 
extract a relationship for our more complex random porous network 
between the tortuosity τ and: the interconnectivity distance d; concen-
tration of internal pore junctions, Nint (which is a measure of the 
porosity through Equation (2)); concentration of the surface pores, Ntop 

and Nbottom; and the porosity bias. Naively, one might anticipate that the 
tortuosity associated with a filter would decrease with increasing filter 
interconnectivity, as more direct routes become available. In our case, 
however, while the tortuosity does indeed decrease with increasing 

Fig. 2. Tortuosity, τ versus (a) interconnectivity distance d, (b) number of in-
ternal pore junctions Nint and (c) the number of top or bottom pores, Ntop or 
Nbottom. The blue curve shows the result for the stochastic model in which 
particles choose a probabilistic path that is biased by the flux through each pore 
at each junction. The red curve shows the result for a deterministic model in 
which the particles choose the path that corresponds to the highest flux, as 
given by Equation (6). The tortuosity is determined by generating 30 different 
random filter configurations with the prescribed material parameters and 
calculating the tortuosity of the path taken by 200 different particles, choosing 
an initial pore location based on the flux for each filter configuration. The error 
bars show one standard deviation in the tortuosity measurements. In (a) we 
consider a filter with Nint ¼ 500, Ntop ¼ Nbottom ¼ 100; in (b) we choose d ¼
30, Ntop ¼ Nbottom ¼ 100; and in (c) we choose d ¼ 30 and Nint ¼ 500 and 
either Ntop ¼ 100 or Nbottom ¼ 100. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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interconnectivity distance d for low values of d, we find that as d in-
creases further the tortuosity rises again (Fig. 2a, blue curve). 

We can gain insight into the non-monotonic dependence of tortuosity 
on d by comparing our model with that of a deterministic process, 
whereby particles always choose to enter the pore with the greatest flux. 
While this model is not expected to portray an accurate representation of 
real filter behaviour, it is instructive to consider, as in this case we find 
that the tortuosity does indeed monotonically decrease with increasing 
connectivity, tending towards 1, indicating that a straight path is taken 
as the interconnectivity distance becomes large (Fig. 2a, red curve). 

This allows us to conclude that the non-monotonic dependence of 
tortuosity on interconnectivity distance is a direct result of the sto-
chasticity of the system. Specifically, in our model, upon arrival at a 
junction, a particle chooses the next pore to enter with a bias towards 
those with larger flux but does not always choose the pore with the 
highest flux. As the number of junctions increases, the difference be-
tween the fluxes through each pore becomes less prominent. This has the 
combined result that the probability of a particle taking a route that is 
not the most direct increases as the number of possible paths that are 
available increases. 

Although in this paper we shall use only the more realistic stochastic 
model, it is illuminating to consider the deterministic model to 
demonstrate show the effect that stochastic behaviour has on the 

Fig. 3. (a) Variation of porosity, φ, with filter depth, z, for a filter structure 
with a porosity gradient defined by (1). Here, Nint ¼ 500, Ntop ¼ Nbottom ¼

100, d ¼ 21, and α ¼ � 2=H, � 1=H, 0, 1=H, 2=H, with H ¼ 100. (b) Rela-
tionship between internal porosity gradient, G, defined as the mean porosity 
gradient over the region z 2 ½10;90�, and the parameter α in (1). 

Fig. 4. (a) Variation of mean porosity, φ, with interconnectivity distance, d, 
with Nint ¼ 500, Ntop ¼ Nbottom ¼ 100 and α ¼ 0. (b) Variation of internal pore 
surface area, S, with interconnectivity distance, d, with Nint ¼ 500, Ntop ¼

Nbottom ¼ 100 and α ¼ 0. (c) Parametric representation of the variation of in-
ternal pore surface area, S, with porosity, φ, achieved by varying inter-
connectivity distance, d, with Nint ¼ 500, Ntop ¼ Nbottom ¼ 100 and α ¼ 0. In all 
cases, we average over the internal domain z 2 ½30;70� to avoid the effect of the 
boundary layers observed in Fig. 3(a). 

I.M. Griffiths et al.                                                                                                                                                                                                                              



Journal of Membrane Science 598 (2020) 117664

6

fundamental system properties. 
We observe a similar non-monotonic relationship between the tor-

tuosity and the number of internal pore junctions, Nint (Fig. 2b, blue 
curve). Again this is attributed to the stochastic nature of the particle 
paths, which is confirmed by comparing with the deterministic model 
for which a monotonic relationship exists (Fig. 2b, red curve). While the 
tortuosity exhibits a non-monotonic relationship on interconnectivity 
distance and number of internal pore junctions, its relationship to the 
number of pores on either the top or bottom of the filter is monotonic 
(Fig. 2c). We note that the relationship is the same regardless of whether 
we choose to vary Ntop or Nbottom as the initial tortuosity is independent 
of the orientation of the filter. For similar reasons, the tortuosity is un-
affected by the bias in pore location. We will find below, however, that 
the filter bias, introduced either by a mismatch in Ntop and Nbottom or by a 
bias in the location of internal pore junctions will play a significant role 
in how the tortuosity varies with time as the filter blocks. 

Fig. 5. (a) Normalized flux, Q, versus throughput, V, for a filter with an un-
biased pore distribution (α ¼ 0, Ntop ¼ Nbottom ¼ 100 and Nint ¼ 500) and 
interconnectivity distance d ¼ 18 (red dotted), 21 (blue dashed) and 24 (black 
solid), with particle size a ¼ 0.9. When plotted versus the scaled throughput, V=
Vfinal, the curves collapse onto a single master plot. (b) Log–log plot of final 
throughput, Vfinal versus interconnectivity, d. The blue dashed line shows the 
linear fit log10ðVfinalÞ ¼ 5:5log10ðdÞ � 3:2. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 6. Performance of a filter with an unbiased pore distribution (α ¼ 0, 
Ntop ¼ Nbottom ¼ 100 and Nint ¼ 500) and interconnectivity distance d ¼ 18 
(red dotted), 21 (blue dashed) and 24 (black solid), with particle size a ¼ 0.9. 
The performance is assessed by considering (a) Tortuosity, τ, versus 
throughput, V; (b) Particle removal efficiency, E, versus throughput, V; and (c) 
Particle removal efficiency, E, versus tortuosity, τ. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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5. Relationship with physical properties 

In practice one might envision being presented with a membrane in 
the form of tomographic data. From such data, one could extract the 
network properties by which we choose to define a membrane, namely 
through (1) and the parameters α, Nint, Ntop, Nbottom and d (see [15], for 
example). 

However, a natural question to ask is, how can we relate our choice 
of filter characterization to other physical properties, such as the 
porosity distribution φðzÞ, the porosity gradient, dφ=dz and internal 
surface area of pores, S? In Fig. 3a we present the resulting porosity 
distribution, φðzÞ, for a given membrane characterization. As expected, 
the porosity gradient is approximately constant in the interior, and this 
gradient is linearly proportional to the parameter α in (1) (Fig. 3b). 
However, we are also able to capture the change in porosity near the top 
and bottom surfaces that results from our choice of characterization, 
through Ntop and Nbottom (Fig. 3a). 

The internal pore surface area, S, and porosity φ, both increase with 
interconnectivity distance, d, in a nonlinear way, with a power of 
approximately 3.9 in both cases (Fig. 4a and b). As a result, the para-
metric surface-area–porosity plot achieved by varying the inter-
connectivity distance is approximately linear (Fig. 4c). 

While a membrane may be characterized via a multitude of physical 
properties, the parameterization we choose here provides the clearest 
way to characterize a filter that possesses a porosity gradient and 
different surface porosities. 

6. Influence of interconnectivity 

We begin our assessment of the behaviour of the 3D filters by ana-
lysing their performance as we vary the filter properties. We first 
consider the interconnectivity, quantified through the interconnectivity 
distance d. We consider a filter with an unbiased porosity distribution 
(α ¼ 0, Ntop ¼ Nbottom ¼ 100, Nint ¼ 500) with particle size a ¼ 0:9. 

The flux–throughput graph is concave down (Fig. 5a), which is a 
result of the simultaneous internal fouling and complete blocking that 
takes place. This feature is discussed in more detail in Ref. [2] for a 
membrane comprising straight-through pores with no pore inter-
connectivity, as exhibited by track-etched membranes. The increase in 
the number of paths permissible through the filter offered by a higher 
interconnectivity expresses itself through a slower decline in the flux 
with throughput (Fig. 5a). The relationship between the final 
throughput at blocking, Vfinal, and interconnectivity distance, d, is seen 
to obey a power law, of the approximate form Vfinal∝d5:5 (Fig. 5b), 
though we acknowledge that this is only for the limited parameter range 
of d that we considered here. Plotting Q versus V=Vfinal we find that the 
curves all collapse onto a single master plot (though we do not show this 
here). This indicates self-similarity of the system behaviour. This 
observation is especially noteworthy since it was found that for filters 
with regularly arranged pores the Q–V behaviour of a filter with no 
interconnectivity does not collapse onto the curves generated from a 
filter with interconnectivity between adjacent pores when scaled with 
final throughput [1]. This emphasizes the ability of the Q–V curve to 
expose properties in the underlying filter microstructure, as was found 
in Ref. [2]. 

As mentioned in the Introduction, this network model unlocks the 
potential to explore the way in which the tortuosity of paths taken by 
particles changes during the filtration process, and thus whether this 
property may be related to the overall filtration performance, and so we 
now turn our attention to this. 

As the flux declines, we observe a concurrent rise in the tortuosity 
(Fig. 6a). This increase in tortuosity corresponds directly to an increase 
in the average distance a particle must travel before it passes out of the 
filter, as particles that have previously adhered to the pore walls 
obstruct the paths. The final tortuosity when the filter blocks completely 

also rises with increasing pore interconnectivity, but perhaps more 
interestingly, so does the initial tortuosity taken before fouling initiates. 
This indicates that, even in the absence of particle fouling, the 
randomness attributed to a particle path results in more convoluted 
paths being taken from the outset. 

The increase in tortuosity will naturally lead to a greater chance of a 
particle being captured due to its increased exposure to the pore walls 
onto which it may adhere. This leads us to the natural question of how 
the particle removal efficiency, defined in (10), changes as the filtration 
process evolves. As anticipated, the removal efficiency of a filter will rise 
with throughput as a result of the increase in tortuosity (Fig. 6b). 

Unlike the Q–V curves plotted in Fig. 5a, neither the tortuosity nor 
removal efficiency curves in Fig. 6(a) or (b) collapse onto a single curve 
when scaled with the final throughput. However, when examining the 
relationship between removal efficiency and tortuosity we find this is 
independent of pore interconnectivity, with all curves lying on a single 
master curve (with variations among the curves lying within those ex-
pected due to stochastic variations) (Fig. 6c). Naively, one might expect 

Fig. 7. (a) The performance metric M ¼ EQ versus throughput V for a filter 
with interconnectivity distance d ¼ 18 (red dotted), 21 (blue dashed), and 24 
(black solid). When the performance metric scaled with its initial value is 
plotted versus the scaled throughput, V=Vfinal, each curve collapses onto a single 
master plot. (b) Mβ ¼ EβQ versus throughput V with β ¼ 0:1;0:5;1; 2;3 and d ¼
24. In both figures, we consider a filter with an unbiased pore distribution (α ¼
0, Ntop ¼ Nbottom ¼ 100 and Nint ¼ 500), with particle size a ¼ 0:9. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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this relationship between removal efficiency and tortuosity to be of the 
form of Equation (7) with ℓ replaced with τ, that is 

E¼ 1 � pτ ¼ð1 � paÞ
τ
; (11)  

since on average the particles are travelling a distance τ through the 
filter. However, this is not true. Since there is a spread of particle paths 
around this mean travel distance and the probability of adhering to the 
walls is a nonlinear function of travel distance, this skews the relation-
ships so that the mean particle removal efficiency is not simply related to 
the mean travel distance. 

Thus, given the separation of behaviour when we plot the removal 
efficiency or tortuosity separately in terms of the throughput, and the 
nonlinear adhesion relationship, the collapse of this data is noteworthy 
and perhaps unexpected. This indicates that, regardless of whether the 
increase in interconnectivity is achieved through fabrication methods or 
as a result of paths being blocked by particle adhesion, the associated 
improvements in removal efficiency of a filter will be the same. 

In practice, in a given filtration challenge one often wishes to 
maximize particle removal efficiency while also maintaining a large 
flux. Given the observed rise in efficiency and simultaneous fall in flux 
with throughput this provokes an optimization question of when a filter 
is performing at its ‘best’. To attempt to answer this question, we 
consider the combined performance metric, M, defined as 

MðVÞ¼EðVÞ⋅QðVÞ: (12) 

By studying Figs. 5(a) and 6(b) alone it is not immediately obvious 
how M will vary with throughput, and in particular whether it will be 
monotonic or possess an extremum during the filtration process. How-
ever, upon plotting this quantity, we discover that, in each case, M re-
mains monotonically decreasing, indicating that the performance metric 
is always maximized initially (Fig. 7a). The performance metric is also 
seen to increase with increasing interconnectivity. Scaling M with its 
initial value and plotting versus V=Vfinal collapses all the curves onto a 
single master plot, in a similar manner to the Q–V curves. This demon-
strates that the self-similarity in the filter interconnectivity is a property 
of both the Q–V relationship and the filtration efficiency metric. 

Although the metric presented in (12) provides a mechanism for 
estimating the overall performance of the filter through a single 
parameter, one might imagine scenarios in which the particle removal 
efficiency is prized more highly than the flux. In this case, a generalized 
metric Mβ ¼ EβQ would be a more appropriate quantity of interest, 
where β measures the relative importance of removal efficiency to flux in 
the filtration challenge. The behaviour remains monotonic for order-one 
values for β, indicating that the performance is always best initially 
(Fig. 7b). When β is increased sufficiently, non-monotonic behaviour is 
eventually observed for β≳20, corresponding to an optimal performance 
at an intermediate point in the filtration process. However, at this point 
the value of M is rather low and so the stochastic variations become 
important. (We do not show these curves here.) Large values of β 
correspond to prizing particle removal efficiency much more highly than 
flux, which would apply in situations where contaminant removal is 
vital, such as in virus removal. 

7. Influence of porosity bias 

We continue our assessment of filtration performance on the filter 
properties, now turning our attention to study the influence of the 
porosity distribution. As discussed in the Introduction, a porosity bias 
can be implemented within our framework in two ways. The simplest 
way is by varying the porosity gradient in the internal structure, through 
the parameter α that appears in (1). This type of porosity gradient has 
been considered in Refs. [10,11] in the context of filters comprising 
obstacles onto which contaminants adhere, which describes, for 
example, fibrous filters; our work here provides the porous-network 
analogue of this. The second route to obtaining a porosity gradient is 

by introducing a difference between Ntop and Nbottom. This set-up may 
apply to composite filters that comprise membrane layers with different 
porosities, which are used in gas separation, nanofiltration and reverse 
osmosis [12]. In this section we explore the influence of both types of 
porosity bias. 

7.1. Internal porosity gradients 

We begin by studying the effect of internal porosity gradients by 
varying the parameter α in the probability density function (1). In this 
case, the Q–V curves in Fig. 8a show that the flux decline is minimized 
for filters where more pores are placed towards the top of the filter. This 
is in accord with the observations made for fibrous filters [10,11]. In a 
similar manner to the Q–V curves obtained when varying inter-
connectivity, we also observe self-similarity when we plot the Q–V 
curves with respect to the scaled throughput V=Vfinal. 

In Fig. 8b we plot the variation of final throughput with respect to 
how strongly biased the filter is, represented through the porosity 
gradient α. We find that a higher throughput is achieved by filters with 

Fig. 8. (a) Normalized flux, Q versus throughput V, for a filter with zero bias 
α ¼ 0 (red dotted), a bias towards the bottom α ¼ 0:01 (blue dashed) and a bias 
towards the top α ¼ � 0:01 (black solid), with Ntop ¼ Nbottom ¼ 100, Nint ¼

500, an interconnectivity distance d ¼ 18 and particle size a ¼ 0.9. (b) Final 
throughput, Vfinal versus porosity gradient, α. When plotted versus the scaled 
throughput, V=Vfinal, each curve collapses onto a single master plot. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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more pores distributed towards the top portion of the filter interior. The 
reason for this observation is that pores located further into the depth of 
the filter will see fewer particles as many will have already been 
removed by the upper pores. Allowing for a greater number of pores in 
the upper part of the filter will lead to a more uniform distribution of 

particles in the pores when the filter finally blocks. However, continuing 
to increase the bias in the porosity towards the top of the filter will lead 
to insufficient pores in the lower layer to accept the arriving particles 
and the filter will block sooner. This gives rise to a non-monotonic 
dependence of throughput on α. A similar observation was made for a 
non-woven filter medium [10,11]. We find an optimal porosity gradient 
described by α ¼ αopt � � 0:04 in (1). 

The tortuosity at any given throughput increases with increasing bias 
towards the top of the filter, as well as the maximum (final) tortuosity 
that can be attained (Fig. 9a). Likewise, the particle removal efficiency 
improves as the pores are biased towards the top (Fig. 9b). 

As in the case where we varied the interconnectivity distance, we 
find that, although both the tortuosity and removal efficiency vary with 
bias, variations in the bias are not expressed through the relationship 
between removal efficiency and tortuosity (Fig. 9c). 

The initial removal efficiency of each filter is seen to be unaffected by 
the bias (recall that the initial removal efficiency varies with inter-
connectivity distance, as seen in Fig. 7a). This shows that the removal 
efficiency depends on the mean porosity of the filter (which we hold 
constant in each case by definition of our porosity function (1)) (Fig. 9c). 
The superior performance of a filter whose pores are biased towards the 
top is, however, evident as time progresses (Fig. 10). When the perfor-
mance metric M is plotted versus scaled throughput, V=Vfinal, all curves 
collapse onto a single master plot. 

7.2. Top and bottom porosity differences 

We now turn our attention to achieving a bias in the porosity by 
considering a difference between the top and bottom surface porosities, 
Ntop and Nbottom. The surface layers mimic composite filters that are 
composed of a thin ‘skin’ layer and an underlying porous support 
structure [12]. 

We study the effect of varying the top surface porosity relative to the 
bottom surface porosity while we hold the mean porosity constant (i.e., 
Ntop þ Nbottom is held fixed). In this case, we find that the Q–V curves are 
largely insensitive to differences in Ntop � Nbottom over a wide range 
(indicated by the plateau in Fig. 11b). Thus, unlike in the case of an 
internal bias, there is not a clear optimum porosity difference between 
the top and bottom surfaces. If this difference is increased by a suitable 
amount either in the positive or negative sense then the throughput 

Fig. 9. Performance of a filter with zero bias α ¼ 0 (red dotted), a bias towards 
the bottom α ¼ 0:01 (blue dashed) and a bias towards the top α ¼ � 0:01 (black 
solid), with Ntop ¼ Nbottom ¼ 100, Nint ¼ 500, an interconnectivity distance d ¼
18 and particle size a ¼ 0.9. The performance is assessed by considering (a) 
Tortuosity, τ, versus throughput, V; (b) Particle removal efficiency, E, versus 
throughput, V; and (c) Particle removal efficiency, E, versus tortuosity, τ. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 10. The performance metric M ¼ EQ versus throughput V for a filter with 
zero bias α ¼ 0 (red dotted), a bias towards the bottom α ¼ 0:01 (blue dashed) 
and a bias towards the top α ¼ � 0:01 (black solid), with Ntop ¼ Nbottom ¼ 100 
and Nint ¼ 500, an interconnectivity distance d ¼ 18, and particle size a ¼ 0:9. 
When plotted versus the scaled throughput, V=Vfinal, each curve collapses onto a 
single master plot. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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eventually falls as a result of either too few top surface pores or too few 
bottom surface pores (Fig. 11a). Plotting the flux versus the scaled 
throughput V=Vfinal again leads to a collapse to a master plot. 

When considering the evolution of the tortuosity we find similarly 
that the behaviour is the same over a broad range of values for Ntop �

Nbottom. If Ntop � Nbottom is too negative, so that the number of pores on 
the top is too low, then the tortuosity starts off lower than that when Ntop 

and Nbottom are similar to each other, but eventually crosses over at some 
point, and takes larger values thereafter. When Ntop � Nbottom is large 
and positive, so that the number of pores on the bottom is too low, the 
tortuosity is always lower than that when Ntop and Nbottom are similar to 
each other (Fig. 12a). A similar behaviour is observed for the removal 
efficiency (Fig. 12b). As in previous examples, the removal efficiency 
versus tortuosity curves are all approximately the same, though a small 
distinction can now be made (Fig. 12c). 

The curves for performance metric M are improved to begin with 
when Ntop � Nbottom is either large and positive or large and negative but 
cross over at some point with the curve for the case when Ntop and 
Nbottom are similar (Fig. 13). 

Fig. 11. (a) Normalized flux, Q versus throughput V, a filter with a bias to-
wards the bottom Ntop � Nbottom ¼ � 150 (red dotted), zero bias Ntop� Nbottom ¼

0 (blue dashed) and bias towards the top Ntop � Nbottom ¼ 180 (black solid) 
while ðNtop þ NbottomÞ=2 ¼ 100, with α ¼ 0, Nint ¼ 500, an interconnectivity 
distance d ¼ 18 and particle size a ¼ 0.9. (b) Final throughput, Vfinal, versus 
Ntop � Nbottom. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 12. Performance of a filter with a bias towards the bottom, Ntop �

Nbottom ¼ � 150 (red dotted), zero bias, Ntop � Nbottom ¼ 0 (blue dashed) and 
bias towards the top Ntop � Nbottom ¼ 180 (black solid) with ðNtop þ NbottomÞ=

2 ¼ 100, α ¼ 0, Nint ¼ 500, an interconnectivity distance d ¼ 18 and particle 
size a ¼ 0.9. The performance is assessed by considering (a) Tortuosity, τ, 
versus throughput, V; (b) Particle removal efficiency, E, versus throughput, V; 
and (c) Particle removal efficiency, E, versus tortuosity, τ. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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8. Influence of particle size 

Having assessed the performance of a given filter given its physical 
properties we conclude by exploring the filter performance when sub-
jected to different feeds, by varying the size of the particles being 
filtered. We use a filter with no porosity bias (α ¼ 0 in (1)), and set 
Ntop ¼ Nbottom ¼ 100, Nint ¼ 500 and an interconnectivity distance d ¼
18. We restrict our attention to monodisperse feeds and vary the particle 
size, a < 1 so that particles are able to enter the pores and internal 
fouling occurs. As noted in x2.3, when a > 1 all particles are sieved at 
the surface of the filter, which is not of interest here. We keep the 
probability of adhering to the pore wall, pa ¼ 0:01 in all cases. 

As the particle size increases the blocking process is accelerated, as 
expected (Fig. 14a). A feature that has been present in all of the analysis 
conducted so far is that when the filter properties were adjusted the Q–V 
curves exhibited self-similarity when plotted versus the scaled 
throughput V=Vfinal. Performing the same process for the curves in 
Fig. 14a however no longer leads to a collapse onto a single master plot. 
Thus the self-similarity that was present when material properties of the 
filter were varied does not extend to variations in the feed. We attribute 
this to different blocking mechanisms at play: larger particles lead to 
pores blocking completely more quickly, so that a greater proportion of 
pores are no longer accessible sooner. 

The tortuosity and particle removal efficiency both rise more sharply 
with increasing particle size (Fig. 15a and b). The relationship between 
removal efficiency and tortuosity exposes a dependence on particle size 
(Fig. 15c). This is in contrast to the results obtained for variations in the 
material properties of the filter, which did not present themselves in the 
relationship between removal efficiency and tortuosity. 

The performance metric M reduces with increasing particle size 
(Fig. 16). In a similar manner to the Q–V curves, the dependence of the 
performance metric on scaled throughput, V=Vfinal also does not reduce 
to a single master curve, unlike all previous studies for variations in 
material properties of the filter. 

9. Conclusions 

We have presented a fully general framework to describe the evo-
lution in the performance of a filter during the filtration process. The 
framework models filter structures comprising a fully random network 

of interconnected pores, the more traditional simplifying assumptions 
on periodicity in the filter geometry that enable a model to be more 
tractable. 

The network model outlined here provides a fully generalized 
version of the simpler frameworks outlined in Refs. [1,2], and makes a 
step towards encapsulating the full complexity of a filter within a 
framework that is easy to implement and study. The model allowed us to 
perform a comprehensive study of the performance of a filter on both the 
filter structure (expressed through the pore interconnectivity and 
porosity gradient) and the feed composition (expressed through the size 
of the contaminants). 

The flexibility in the model allowed us to extract simple scaling laws 
from this complex underpinning network structure. In particular, we 
found that a universal self-similarity was expressed in the flux–-
throughput curves upon variations in the filter structure when scaled 
with the final throughput. In contrast, when we turned our attention to 
studying the impact of variations in the feed properties, which we 
explored by varying the particle size, we found that this self-similarity 
was no longer present. In particular, the flux–throughput curves no 
longer collapsed onto a single master curve. 

The most notable advantage of this model is its ability to link the 
notion of tortuosity to a filter’s performance. In doing so we were able to 
uncover further self-similarity, in the relationship between particle 
removal efficiency and tortuosity, a result that was not easily anticipated 

Fig. 13. The performance metric M ¼ EQ versus throughput V for a bias to-
wards the bottom, Ntop � Nbottom ¼ � 150 (red dotted), zero bias, Ntop�

Nbottom ¼ 0 (blue dashed) and bias towards the top Ntop � Nbottom ¼ 180 (black 
solid) with ðNtop þ NbottomÞ=2 ¼ 100, α ¼ 0, Nint ¼ 500, an interconnectivity 
distance d ¼ 18 and, with α ¼ 0, an interconnectivity distance d ¼ 18, and 
particle size a ¼ 0:9. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 14. (a) Normalized flux, Q versus throughput V, an unbiased pore distri-
bution (α ¼ 0, Ntop ¼ Nbottom ¼ 100 and Nint ¼ 500) and interconnectivity 
distance d ¼ 18, with particle size a ¼ 0.7 (red dotted), a ¼ 0.8 (blue dashed) 
and a ¼ 0.9 (black solid). (b) Final throughput, Vfinal versus particle size, a. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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by studying the evolution of these properties during filtration. We found 
that the removal-efficiency–tortuosity relationship was unaffected by 
changes in the material property of the filter, but did exhibit a depen-
dence on the particle size in the feed. 

Our network model allows us to probe the behaviour of a complex 
and realistic filter configuration in a simple and tractable manner. We 
expect that the model can be used in real-life scenarios, to enable 
accelerated testing of various filter challenges, as well as reduce the 
number of costly experiments that are traditionally required to ensure 
that a filtration unit is operating in the desired manner. 
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