Ivan Mitevski

    In Prep.

  1. I. Mitevski and G. Vecchi, Radiative Feedbacks in CO2 removal scenarios

  2. I. Mitevski, S. Lee, G. Vecchi, C. Orbe, L. M. Polvani, More positive and Less Variable North Atlantic Oscillation at High CO2 forcing

  3. Submitted

  4. Y-C. Liang, O. Miyawaki, T. A. Shaw, I. Mitevski, L. M. Polvani, and Y-T. Hwang, Linking Radiative-Advective Equilibrium Regime Transition to Arctic Amplification

  5. T.P. Janoski, I. Mitevski, R.J. Kramer, M. Previdi, and L.M. Polvani, ClimKern: a new Python package and kernel repository for calculating radiative feedbacks

  6. I. Mitevski, L. M. Polvani, H. He, G. Vecchi, C. Orbe, B. Soden, R. Miller, State dependence of CO2 Effective Radiative Forcing from 1/16x to 16xCO2

  7. X. Zhang, D.W. Waugh, I. Mitevski, C. Orbe, L.M. Polvani, Decreased Northern Hemisphere Precipitation from Consecutive CO2 Doublings Is Associated with Significant AMOC Weakening

  8. Peer-Reviewed Publications

  9. I. Mitevski, R. Chemke, C. Orbe, L.M. Polvani, Southern Hemisphere Winter Storm Tracks Respond Differently to Low and High CO2 Forcings, Journal of Climate, (2024)

  10. K. Armour, C. Proistosescu, Y. Dong, ..., I. Mitevski, P. Forster, J.M. Gregory, Sea-surface temperature pattern effects have slowed recent global warming and biased emergent constraints on climate sensitivity, PNAS, (2024) [supp. mat.]

  11. D. Raiter, L.M. Polvani, I. Mitevski, A. Pendergrass, C. Orbe, Little change in apparent hydrological sensitivity at large CO2 forcing, Geophysical Research Letters, (2023) [supp. mat.]

  12. Shih-Ni Zhou, Y-C. Liang, I. Mitevski, L.M. Polvani, Stronger Arctic Amplification Produced by Decreasing, not increasing, CO2 Concentrations, Env. Res. Climate, (2023) [supp. mat.]

  13. I. Mitevski, Y. Dong, L.M. Polvani, M. Rugenstein, and C. Orbe, Non-monotonic feedback dependence under abrupt CO2 forcing due to a North Atlantic pattern effect, Geophysical Research Letters, (2023) [supp. mat.]

  14. I. Mitevski, L.M. Polvani, and C. Orbe, Asymmetric Warming/Cooling Response to CO2 Increase/Decrease Mainly Due to Non-Logarithmic Forcing, not Feedbacks, Geophysical Research Letters, (2022) [supp. mat.]

  15. Y-C. Liang, L.M. Polvani, and I. Mitevski, Arctic Amplification, and its Seasonal Migration, Over a Wide Range of CO2 Forcing, npj Clim. Atmos. Sci., 5, 14 (2022) [supp. mat.]

  16. I. Mitevski, C. Orbe, R. Chemke, L. Nazarenko, L.M. Polvani, Non-Monotonic Response of the Climate System to Abrupt CO2 Forcing, Geophysical Research Letters, (2021) [supp. mat.]

  17. I.M. Griffiths, I. Mitevski, I. Vujkovac, M.R. Illingworth, P.S. Stewart, The Role of Tortuosity in Filtration Efficiency: a General Network Model for Filtration, Journal of Membrane Science, (2019)

Other Publications & Datasets

  1. T. Janoski and I. Mitevski, ClimKern python package (1.1.0), Zenodo, (2024)

  2. T. Janoski, I. Mitevski, R. Kramer, M. Previdi, and L.M. Polvani, ClimKern Kernel and Data Repository (1.0.1), Zenodo, (2023)

  3. I. Mitevski, Asymmetric and Non-monotonic Response of the Climate System to Idealized CO2 Forcing, PhD Thesis, Columbia University in Applied Mathematics and Applied Physics Department, doi:10.7916/18qg-2y74 (2023)

  4. I. Mitevski, C. Orbe, R. Chemke, L. Nazarenko, L.M. Polvani, Abrupt CO2 experiments with NASA GISS Model E2.1-G, Zenodo, (2020)

  5. I. Mitevski, D. Misra, M.N. Bhuyian, Y. Ding, Frequency and Area Dependence of High-K/Ge MOS Capacitors, ECS Transactions, (2017)